If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15u^2-18u-35=0
a = 15; b = -18; c = -35;
Δ = b2-4ac
Δ = -182-4·15·(-35)
Δ = 2424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2424}=\sqrt{4*606}=\sqrt{4}*\sqrt{606}=2\sqrt{606}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{606}}{2*15}=\frac{18-2\sqrt{606}}{30} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{606}}{2*15}=\frac{18+2\sqrt{606}}{30} $
| -2x+19-6x=91 | | 8x-4.6=-3.5 | | 6x+8=9x+8 | | 3x-4(x+1)=2-3/10(3x-4) | | 2(3x-6)-2=2(x-3)+8 | | 0.5x+5-1=0.2 | | -7-(1+3n)=-13-4n | | 10^x-4=7 | | 6.9n-5.9n+.3=-4.1-7.9 | | -6x^+7x=-10 | | 6.9n-5.9n+.3=12 | | 3+9(4x-9)=8-4(9x+8) | | -29y=-12y^-15 | | 2^x+3=2^-4 | | 5x-13-6x=3(x+5)-16 | | −41a−4=47a−3 | | x^2-3x^2+2=2 | | 2+24u=4(6u-2)+10 | | 32+3/4x=4x+6 | | 4(2x+1)^-70=42 | | C=15n+85. | | y=6-10 | | 4-3I2x-5I=10 | | 4-32x-5=10 | | -4=3(x/2-7) | | -30=3u | | -2.5=5n | | X(5x-5)=(5x+3)(x-1 | | x^/4-1=x/3 | | f(-2)=-6 | | -6x=-3x^+4 | | 7/8-2/3y=13 |